Performance Enhancement of Microwave Sub-wavelength Imaging and DOA Estimation by Using Signal Processing Techniques
نویسنده
چکیده
In this work, we show how we can improve the image resolution capabilities of a Phase Conjugating (PC) lens as well as the angular resolution of Luneburg lens antennas, aperture antennas, and the Randomly Distributed Radar Array (RDRA), by employing signal processing techniques, such as the Correlation Method (CM), the Minimum Residual Power Search Method (MRPSM), the sparse reconstruction method, and the Singular-Value-Decomposition (SVD)-based basis matrix method. In the first part, we apply these techniques for sub-wavelength imaging in the microwave regime by combining them with the well-known phase conjugation principle. We begin by considering a one-dimensional microwave sub-wavelength imaging problem handled by using three signal processing methods, and then we move on to twoor three-dimensional problems by using the SVD-based basis matrix method. Numerical simulation results show that we can enhance the resolution significantly by using these methods, even if the measurement plane is not located in the very near-field region of the source. We describe these proposed algorithms in detail and study their abilities to resolve at the sub-wavelength level. Next, we investigate the sparse reconstruction method for a normal Luneburg lens antenna and the Correlation Method and the SVD-based basis matrix method for a flat-base Luneburg lens antenna to estimate the Direction-of-Arrival (DOA). Numerical simulation results show that the signal processing techniques are capable of enhancing the angular resolution of the Luneburg lens antenna, enabling the lens to locate multiple targets with different scattering cross-sections, and achieving higher angular resolution. Finally, we present a hybrid approach which combines the Correlation Method and the SVD-based basis matrix method to achieve considerably higher angular resolution when using two representative aperture antennas, e.g. a parabolic reflector, a random array, to estimate the DOA. Numerical results show that the proposed hybrid approach can help achieve a higher angular resolution than that without the use of signal processing.
منابع مشابه
Performance Enhancement of Microwave Sub-Wavelength Imaging and Lens-Type DOA Estimation Systems by Using Signal Processing Techniques
In this work, we show how we can improve the image resolution capabilities of a Phase Conjugating (PC) lens as well as the angular resolution of Luneburg lens antennas by employing signal processing techniques such as the Correlation Method (CM), the Minimum Residual Power Search Method (MRPSM), the sparse reconstruction method, and the Singular-Value-Decomposition (SVD)based basis matrix metho...
متن کاملImplementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملتخمین جهت منابع با استفاده از زیرفضای ختری-رائو
This paper deals with Direction of Arrival (DOA) Estimation using Uniform linear array (ULA) for the case of more sources than sensors in the array processing. Khatri-Rao subspace approach, introduced for DOA estimation for this, in non-stationary signal model. The technique will be shown to be capable to handle stationary signals, too. Identifiability conditions of this approach are addressed....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015